大型电机安装技术探讨

安 艳 宋 战 (鞍钢职工大学) (鞍钢设备处)

摘要 介绍了大型电机的安装准备、基础板、转子的安装等,对有关技术问题进行了探讨。 关键词 大型电机 安装

Pow erful Motor Installation Technique

An Yan

Song Zhan

(A ISC Staff and Workers College) (A ISC Equipment Department)

Abstract The paper covers installation preparation and installation of base plate nand rotor and discusses the problem's concerned

Key Words powerful motor installation

1 前言

电机的使用在工厂中是必不可少的, 在轧钢 发电及矿山等企业中都有体积, 容量较大的电机 在运行。这些大型电机的安装过程是一个较为复 杂而专业的工作。

近年来,大型电机安装领域中出现了许多新的方法和技术,但一些常规作法仍然在安装过程中使用。由于电机出厂装配不一,有些电机是转子与定子分解到现场;有些则是整体的;对于大型直流电机来说,绝大多数都是分解到货。有些电机甚至基础板也是分解的。各种电机的到货情况不一,电机安装的方法也不同。本文仅以上海宝钢的高炉鼓风机为例,对一般的安装方法加以粗略说明。

2 大型电机安装的准备工作

由于大型电机安装是一个复杂而专业的过程,施工者的责任重大,因此在安装之前要进行周

安艳 讲师 鞍钢职工大学

邮编 114021

密的准备。安装前的准备工作如下。

2 1 施工人员的准备

主要人员有: 技术人员、电钳工、起重架工、吊车工、测量工。人员的准备与工期合同的要求有密切关系, 既要考虑到操作者的经验及技术水平, 又要考虑到甲方工期的要求, 从而达到节省人力及满足建设单位要求的目的。

2 2 现场环境的准备确认

在安装之前必须进行现场调查。主要内容为核实现场环境,如通风、照明;安装过程中的设备堆放地及场地荷载的承受能力;被安电机部件尺寸及重量;现场起重设备能否满足吊装的要求;运输线路及方案。冬季施工还需考虑保温等问题。

2 3 材料及工具的准备

安装大型电机中最常规的准备材料是各种垫铁,应提前按被安电机基础板图要求备好;还有特制搬手,其它均应是常规的工具。

2 4 技术组织措施的准备

安装之前应编制出详细的作业设计,包括:电机的基本情况,安装精度,吊运方案,人力安排,工种配备、工期计划,工具仪器,基本材料,辅助材料,基础板安装方式以及其它特殊要求。技术人员要在安装之前向全体工作人员进行详尽的技术交

底. 以防止盲目上阵。

3 基础板安装

在电机基础验收后,便可以着手进行电机安装的头道工序——基础板的安装。这项工作是大型电机安装中最重要的环节,从工作量方面看约占整个电机安装的40%。通常基础板的安装有下面几种方法:

凿毛硬垫法: 这种方法适用于基础板为整体, 甚至基础板与电机成一体到现场。直接与机械接 手找正定心, 其操作方法是基础按垫铁的尺寸及 位置凿毛, 要求凿出的颗粒细密, 凸凹均匀。 平垫 铁旋转后与毛面接触应在 70% 以上, 对平垫铁和 斜垫铁进行研磨, 要求垫铁之间的接触面在 70% 以上。

座浆垫板法: 这种安装方法适应较广, 不论基础板是整体到货, 还是分解到货, 均可采用这种方法。对于垫铁的要求, 长度应为电机基础板的宽度再加 25~50mm, 宽度一般应在 60~80mm 之间。混凝土配合比如表 1 所示。

表 1				
材料名称	浇筑水泥	砂子	石 子	水
重量比,%	1	1	1~ 1. 2	0 36~ 0 37

座浆所用水泥为高标号, 一般采用五羊 600 号、砂子应水洗后烘干; 石子的粒度为 5~ 10mm。

按上面配合比搅拌均匀进行座浆, 混凝土应在 15m in 内用完。

流动灌浆法: 这是一种新的安装方法, 也称为 "无垫铁"安装法, 这种方法与我们通常采用的安装方法相比较, 能够节省大量的垫铁及其加工费用, 它适用于分立基础板的安装, 并配置测量仪一起施工。

宝钢高炉鼓风电机的基本情况:

容量 48000kW; 转速 3000r/m in; 电压 10000V; 频率 50Hz; 绝缘等级 F; 轴承给油量 $192m^3/n$; 定子重量 105t; 体积 $5900 \times 4600 \times 4200$; 转子重量 27t; 体积 $9000 \times 1400 \times 1800$; 主机基础板有 6 块(其中包括两轴承座基础板) 励磁

机及刷架 5 块, 总计 11 块。所有板的厚度均为 80_{mm} 。

流动灌浆水泥墩座的制作方法:

- (1) 将基础上应放置基础板的位置进行铲凿, 其深度为 10~ 15mm; 铲凿的凸凹度不应过大, 应在直径为 10~ 20mm 左右为宜, 然后吹风, 洒水浸湿。
- (2) 每块基础板底面都设有 3~ 6 颗螺旋调节装置(螺丝杆)。

基础板底面经除锈后,按其准确的位置找正、调平、测好标高,把紧各底脚螺栓,再复核实,正确为止。

- (3) 在每块基础板应放"垫铁"的位置上,按要求规格做好模壳(材料为泡沫板,有很好的伸缩特性,可以将基础的麻面全部封严),模壳应将灌注口处做得比溢出口高出50mm,模壳封闭要好,固定应稳固,四周用快干胶水及胶带粘结,各模之间应有支持场,以防止在灌浆时倾斜。
- (4) 水泥为特殊型号,由日本提供,每袋 25kg。各种原料已配好,其中:

混合材料(快速固化) 1. 33kg 标号水泥 7kg

砂石、石子

16 67kg

(5) 要求水 灰比(kg) 为 3 67 25, 将水泥一袋放入桶中, 然后加入 3 67kg 水, 用手动搅拌器 搅均, 马上用一漏 斗检查(其规格为: 入口 Ф70mm; 出口 Ф14mm, 高度为 395mm), 用手指阻住出口, 将水泥浆灌满, 然后放开手指, 浆液流出, 如果这一漏斗水泥在 6~8s 之间流完, 则说明干湿适宜, 可以浇灌。

为了使水泥砂浆充分收缩, 浇灌分两次进行, 第一次灌至总高度的 2/3 处, 10~ 15m in 之后再 浇灌余下 1/3, 并使砂浆从后面出口溢出为止(入 口处高于出口, 这是为了产生压力, 在水泥收缩 时, 以压力来填充砂浆)。

(6) 浇灌完 30m in 后, 沿基础板的边沿垂直插入 2mm 的铁板, 使"水泥墩"与基础板一样宽。浇灌 4h 之后开始养生——用浸湿的破布将砂浆的暴露部分盖好, 维持 72h。

养生 3~ 4 天将模脱掉, 并打去多余部分, 使 之成为规整的水泥墩座。这时取下基础板对墩座 进行检查, 肉眼观察水泥墩表面, 如果与基础板接 触面的"气泡"面积总和小干水泥墩上表面的 1/6 即为合格。检查后再用浸湿的破布将墩座围好,继 续养生。

当确认水泥墩座合格之后, 开始安装基础板。 由于水泥墩不可避免的有少量的收缩, 所以必须 准备几种薄垫板: 0 05, 0 07, 0 10, 0 15, 0 20 再按规定的精度标准将基础板安装完毕。

通过试验.3~4日之间强度可以达到 35M Pa, 这样安装基础板是没什么问题的。

这种安装方法适用于电机较大, 基础板分解 到货, 标高明确, 垫铁组数较多的情况, 主要优点 就是可以节约大量的垫铁及其加工损耗, 但是制 作起来稍有麻烦。虽然这种浇注材料是特殊的,但 是可以买到, 是一种很有发展前途的电机安装技 术, 值得推广。

4 转子安装

一台电机的安装往往都是在转子落成或穿入 时形成安装现场的髙潮。因为这道工序非常重要, 具有很高的危险性, 所以引人注目。

转子安装可分为落成转子和穿入转子两种:

绝大部分直流大型电机定子是分为上、下瓣 的,在下瓣定子安装之后,就可以落成转子,这种 安装相对简单, 只是将瓦的上口及各部间隙看好 就可以了。

穿入转子的方法相对难一些, 因为定子是整 体的, 转子必须从一侧穿引过去, 所以危险性更大 些

目前大部分转子穿入方式,都为前面加延长 轴(称假接手),后面加配重,使电机转子重心向后 偏移一定距离, 形成新的平衡, 将转子穿入一半, 这时延长轴已探出定子之外, 定子的内部下方放 好胶皮或纸板之类即可缓钩。将吊绳分开,形成延 长轴一点,后轴一点起钩,平移即将转子穿入。

这种穿入法适用于定子较短的电机, 但对于 定子较长、转子也长的电机(即转速高的)就显得 更加困难。

电机定心计算方法 5

电机安装中的大部分工作都是为最终的定心 服务。评定一台电机的安装质量最有说服力的仍 然是定心数据。因此电机定心工作是电机安装的 中心环节,是不容忽视的工序。

我们过去安装的电机中,一部分定心工作是 用自制的定心器加上塞尺, 凭借操作者的经验, 手 法进行。这种方法充分表现了一个安装钳工的工 作技巧、技术水平, 较为准确可行。 但要证明其准 确, 必须靠"塞尺读数+手法", 就手法而言, 有误 差。另一种方式是用"千分表"定心、它看上去直 观, 速度也比塞尺快得多, 是比较可取的方法。

下面以两组定心器为例进行讨论。 在定心时应计算出 4 个数据: 径向为中心偏差公式:

$$\left(\frac{L_{1}+L_{2}}{2}-\frac{\Gamma_{1}+\Gamma_{2}}{2}\right)/2=\frac{L_{1}+L_{2}-\Gamma_{1}-\Gamma_{2}}{4}$$
 结果为上或下偏差。

同理左、右偏差公式: 左₁₊ 左₂₋ 右₁₋ 右₂

而轴向为两对轮间的开口偏差, 在各规范中 也用上面的公式计算,在以前的安装中也是这样 得出张口的两组数据。在这里就上面的公式同样 用于轴向偏差计算加以讨论。

以上张口为例: 假如就是这种状态, 纯是上张 口,一个定心器时,上面为 10mm,转到下面为 5mm, 这样(上- 下) 即为张口数值(10- 5)= 5mm, 相当于对轮 2 向左平移 5mm, 下面间隙为 0, 上面有 5mm 的张口。如果再除 2 就变成了中心 张口为 2 5mm, 这个张口应该是对轮张口的一 半,这是不合理的。同理两个定心器时,得出4个 数据上、上2、下、下2、公式: $(\frac{L_1+L_2}{2}$ - $\frac{T_{1}+T_{2}}{2}$)/2= $\frac{L_{1}+L_{2}-T_{1}-T_{2}}{4}$ 也是计算到中 心的误差。对于轴向来说也是不合理的,将应有的 精度扩大一倍, 所以建议在今后的工作中, 应用双 定心器的下列公式:

轴 向 差: $\frac{L_{1}+L_{2}-\Gamma_{1}-\Gamma_{2}}{2}$, 径 向 差: $\frac{L_{1}+L_{2}-\Gamma_{1}-\Gamma_{2}}{4}$,轴向和径向的左右偏差依此 类推

> (编辑 袁小青) 收稿日期: 2000 年 8 月 12 日